

VSI Motion Control API

User Guide

Document Revision 1.3
(Updated Oct. 21, 2015)

© 2015 Vital Systems Inc.

Phoenix, AZ USA
For more information please visit the product web page:

www.vitalsystem.com/motion/sdk

http://www.vitalsystem.com/portal/motion/SDK/motion_control_API.php

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 1 www.vitalsystem.com

Contents
License Agreement.. 3

Introduction .. 4

Program Flowchart.. 5

Definition of Terms ... 6

VSI API Functions .. 7

int32 vsiAPIOpenConsole() ... 7

int32 vsiAPIInitialize() .. 7

int32 vsiAPIDispose() .. 7

int32 vsiAPIConnect(char* serial, int32 statusPollIntervalMS, int32 timeoutMS) 7

int32 vsiAPIDisconnect() ... 7

int32 vsiAPIGetVersion(char* version) ... 7

int32 vsiAPIGetLastNotification(char* error, int32* length) .. 8

int32 vsiAPILoadXMLConfig(char* filePath) ... 8

int32 vsiAPIDownloadConfig() .. 8

VSI Command Functions ... 9

System commands .. 9

int32 vsiCmdArm(unsigned int32 axisSelection) .. 9

int32 vsiCmdDisarm() .. 9

int32 vsiCmdDataExchange() .. 9

int32 vsiCmdClearAxisPosition(int32 axis) .. 9

int32 vsiCmdSetAxisPosition(int32 axis, float units) ... 9

int32 vsiCmdClearEncoderCounts(int32 channel) .. 10

int32 vsiCmdSetEncoderCounts(int32 encoder, int32 counts) ... 10

int32 vsiCmdSetDACOutput(int32 channel, double volts) .. 10

int32 vsiCmdSetDigitalOutput(int32 port, int32 pinNumber, bool value) .. 10

Linear Motion Commands .. 11

int32 vsiCmdExecuteMove(int32 axis, double position, double speed, double accel, int32

moveFlags, unsigned int32 seqID) .. 11

int32 vsiCmdExecuteLinearMove(int32 axisMap, double position[], double speed, double accel,

int32 moveFlags) ... 12

Arc/Circular Motion Commands ... 13

int32 vsiCmdExecuteArcMoveCenter (int32 axisOfRotation, double axisPositions[3], double offset1,

double offset2, double speed, bool clockwise) .. 14

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 2 www.vitalsystem.com

int32 vsiCmdExecuteArcMoveRadius (int32 axisOfRotation, double axisPositions[3], double radius,

double speed, bool clockwise) .. 15

int32 vsiCmdExecuteArcMoveAngle (int32 axisOfRotation, double axisPositions[3], double arcAngle,

double speed, bool clockwise) .. 16

Other Motion Commands ... 17

int32 vsiCmdExecuteHoming(int32 axis, double homeOffset, double speed, double accel) 17

int32 vsiCmdCancelMove(int32 axis, bool instantStop) ... 17

int32 vsiCmdLoadBufferedMotion(double bufferedMotion[][VSI_MAX_AXIS], int32

motionPointCount) ... 17

VSI Status Functions .. 18

int32 vsiStatusIsOnline(bool* value) .. 18

int32 vsiStatusIsArmed(bool* value) .. 18

int32 vsiStatusIsMoving(int32 axis, bool* value) .. 18

int32 vsiStatusIsMotionDone(int32 axis, unsigned int32 seqID, bool* value) 18

int32 vsiStatusIsHomeFound(int32 axis, bool* value) .. 18

int32 vsiStatusGetSerial(char* serial) ... 19

int32 vsiStatusGetFollowError(int32 axis, double* value).. 19

int32 vsiStatusGetFollowErrorBits(unsigned int32* errorBits) ... 19

int32 vsiStatusGetMotionSequenceID(int32 axis, unsigned int32* seqID) .. 19

int32 vsiStatusGetAxisPosition(int32 axis, double* position) .. 19

int32 vsiStatusGetAxisPositions(double* axisPositions) ... 20

int32 vsiStatusGetEncoderCounts(int32 channel, int32* value) .. 20

int32 vsiStatusGetDigitalInput(int32 port, int32 pinNumber, bool* value) 20

int32 vsiStatusGetDigitalOutput(int32 port, int32 pinNumber, bool* value) 20

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 3 www.vitalsystem.com

License Agreement

Before using this software, please take a moment to go thru this License agreement. Any use of this

software indicate your acceptance to this agreement.

It is the nature of all machine tools that they are dangerous devices. In order to be permitted to use

this software on any machine you must agree to the following license:

I agree that no-one other than the owner of this machine, will, under any circumstances be

responsible, for the operation, safety, and use of this machine. I agree there is no situation under which

I would consider Vital Systems, or any of its distributors to be responsible for any losses, damages, or

other misfortunes suffered through the use of this software. I understand that this software is very

complex, and though the engineers make every effort to achieve a bug free environment, that I will

hold no-one other than myself responsible for mistakes, errors, material loss, personal damages,

secondary damages, faults or errors of any kind, caused by any circumstance, any bugs, or any

undesired response by the board and its software while running my machine or device.

I fully accept all responsibility for the operation of this machine while under the control of this

software, and for its operation by others who may use the machine. It is my responsibility to warn any

others who may operate any device under the control of DSPMC board of the limitations so imposed.

I fully accept the above statements, and I will comply at all times with standard operating procedures

and safety requirements pertinent to my area or country, and will endeavor to ensure the safety of all

operators, as well as anyone near or in the area of my machine.

WARNING: Machines in motion can be extremely

dangerous! It is the responsibility of the user to design

effective error handling and safety protection as part of

the system. VITAL Systems shall not be liable or

responsible for any incidental or consequential damages.

By Using the DSPMCv2 motion controller, you agree to

the license agreement.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 4 www.vitalsystem.com

Introduction

The VSI Motion Control API is a set of native C/C++ libraries designed as a simple, yet comprehensive,

motion control interface for Vital System Inc. Ethernet Motion Controllers that can be imported into

custom applications.

For windows platforms, the libraries come in the standard .dll file format for Windows.

Available VSI Motion Control API libraries:

 HiCONMotionControlAPI.dll for HiCON OEM (pn7752) and HiCON Integra (pn7766)

 DSPMCMotionControlAPI.dll for DSPMC (pn7762)

Features:

 Compact Native Libraries

The VSI Motion Control API libraries are made in native C/C++ which allow them to be

integrated into any kind of application platform (C/C++ or .NET).

 Cross-platform support

The VSI Motion Control API libraries are designed for minimal porting to provide compatibility

across multiple platforms.

 Simplified program flow for ease of integration

The hardware abstraction layer handles most “lower-level” operations, such as network

communication and motion control, leaving the user with invoking only the necessary control

functions.

 Verbose Debugging Console

The VSI Motion Control API has built-in functionality to open a console window which prints

all messages and notifications in “layman” terms.

 High-Speed UDP network communication

Communication with VSI Motion Controllers is handled via Ethernet through the use of UDP

transmission. This ensures high-speed, low-latency, and lossless data integrity.

 Customizable Data Exchange Rate

Command Data and Status data can be exchanged at a minimum rate of 5ms.

 Single-Axis or Coordinated Linear Multi-Axis Motion Control

Single-Axis Control allows the user to manipulate each axis one by one. Each axis is controlled

independently from the others allowing the user to manually synchronize motion. Coordinated

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 5 www.vitalsystem.com

Linear Multi-Axis control allows the user to move multiple axes at once in a coordinated

trajectory with a specified trajectory velocity and acceleration. This is similar to G0 or G1 in

GCode.

 Multiple motion modes: Relative, Absolute, Velocity

Relative motion moves an axis to a specified target position in relation to the current position.

Absolute motion moves an axis to an absolute target position. Velocity motion moves an axis

indefinitely in the given direction.

Program Flowchart

The VSI Motion Control API requires a sequence of functions to be called in the appropriate order to

operate properly. Below is a flowchart with a graphical description of the ideal VSI Motion Control API

Behavior.

Configure
 vsiAPILoadXMLConfig

Connect
 vsiAPIConnect

ENTER UPDATE LOOP

Online? NO

YES

NO

Process Digital I/O
 vsiStatusGetDigitalInput
 vsiStatusGetDigitalOutput
 vsiCmdSetDigitalOutput

Motion Enable
 vsiCmdArmArmed?

Motion Control
 vsiCmdExecuteMove
 vsiCmdExecuteHoming
 vsiCmdCancelMove

NO

NO

Motion
Error?

Motion Disable
 vsiCmdDisarm

Motion present?
on current axis

YES

YES

YES

NO

YES

Cancel
Current motion?

Motion Cancel
 vsiCmdCancelMoveUpdate Process Loop

 vsiCmdDataExchange

Terminate?

Initialize
vsiAPIInitialize

Dispose
vsiAPIDispose

YES

EXIT UPDATE LOOP

NO

Motion Control Process

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 6 www.vitalsystem.com

Definition of Terms

The VSIMotionAPI is built in native C/C++ and as such, can be imported into several programming

languages. Because of the varied data-type specifications across multiple languages (in terms of size

and functionality), it is necessary to consult the specification for the desired programming language

when importing the API in order to avoid runtime errors such as displaced/misaligned data.

Provided below are the data-types that are used in the API functions:

Type Description

int32 32-bit signed integer.

uint32 32-bit unsigned integer.

float 32-bit single precision floating point value

double 64-bit double precision floating point value

char*
Array of single-byte characters (ANSI). Also known as “string” in other languages, but
not to be confused with “std::string” in the C++ standard libraries.

bool Single-byte Boolean value assigned with “false” (0), or “true” (non-zero value).

NOTE: It is highly recommended to view the provided samples and their source code available on the

VSI Motion API webpage.

NOTE: Data types followed by an asterisk (*) are reference types (also known as pointer types in C++).

This usage must be specified accordingly when interfacing with the API functions (e.g. “ref” in C#, or

“ByRef “in BASIC).

http://www.vitalsystem.com/portal/motion/SDK/motion_control_API.php

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 7 www.vitalsystem.com

VSI API Functions

These functions are directly tied to control of the whole API.

int32 vsiAPIOpenConsole()

Open a debug Console. Console is tied to application. All notifications are printed on the Console

int32 vsiAPIInitialize()

Initialize the Motion API. ALWAYS CALL THIS FIRST

int32 vsiAPIDispose()

Dispose the Motion API. ALWAYS CALL THIS LAST

int32 vsiAPIConnect(char* serial, int32 statusPollIntervalMS, int32 timeoutMS)

Find and connect to any Controller on the network.

Parameters:

 serial – Serial number of a particular controller to connect to. This value is passed as a string (or a

standard character array).

 statusPollIntervalMS – Interval in milliseconds at which data is exchanged with the controller

 timeoutMS – If no message is received from the controller for this time period in milliseconds,

then the controller is flagged as offline

int32 vsiAPIDisconnect()

Disconnect from the current controller. Does nothing if controller is offline.

int32 vsiAPIGetVersion(char* version)

Returns the current version of the Motion Control API.

Parameters:

 version – Return string. Allocate at least 10 characters to for this character array.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 8 www.vitalsystem.com

int32 vsiAPIGetLastNotification(char* error, int32* length)

Returns the Last Notification made by the Motion Control API. This is usually called right after the

HiCON is disarmed to determine the disarming error.

Parameters:

 error – Return string. Allocate a minimum of 200 characters for this character array.

 Length – length of the return string.

int32 vsiAPILoadXMLConfig(char* filePath)

Load the controller config from an XML File. This needs to be called only when the current config needs

to be updated with new data. Config is always stored after loading.

NOTES:

 This function will not affect the motion controller until “vsiAPIDownloadConfig” is called.

Parameters:

 filePath – Full name (directory, filename, and extension) of the file to be loaded.

int32 vsiAPIDownloadConfig()

Download the current config to the controller. If the XML config has been changed during disarmed

state, this function must be called to apply those changes to the controller.

NOTES:

 This function is also called when the API attempts to connect to a controller (failure to download

terminates the connection).

 This function cannot be called while the controller is offline, armed, or if there is no XML File

loaded.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 9 www.vitalsystem.com

VSI Command Functions

These functions are used to direct the behavior of the current motion controller. All of these functions

will do nothing if there is no controller connected (or flagged as offline).

System commands

int32 vsiCmdArm(unsigned int32 axisSelection)

Commands the controller to arm and enable motion output.

Parameters:

 axisSelection – Bit mask used to determine which axes need to be armed. bit0=X, bit1=Y, bit2=Z

and so on. Example: To arm X, Y, Z and B axes, a value of 00010111 (23 in decimal) is required.

int32 vsiCmdDisarm()

Disarms the controller to disarm and disable all motion.

int32 vsiCmdDataExchange()

Sends all outgoing data to the motion controller and receives all input data. This function must be

called in the application update loop.

int32 vsiCmdClearAxisPosition(int32 axis)

Sets the current axis position to zero. Cannot be called while controller is armed.

Parameters:

 axis – The axis to clear position.

int32 vsiCmdSetAxisPosition(int32 axis, float units)

Set the current axis position to the specified value.

Parameters:

 axis – The target axis.

 units – The position (in units) to assign to the current axis.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 10 www.vitalsystem.com

int32 vsiCmdClearEncoderCounts(int32 channel)

Sets the current encoder counts to zero.

Parameters:

 channel – The encoder channel to clear counts.

int32 vsiCmdSetEncoderCounts(int32 encoder, int32 counts)

Sets the current encoder counts to the specified value.

Parameters:

 channel – The target encoder channel.

 counts – The number of counts to assign to the encoder channel.

int32 vsiCmdSetDACOutput(int32 channel, double volts)

Set a specified amount of volts to be outputted on a DAC channel. These volts operate outside the PID

loop, so the channel in question must not be currently mapped to an enabled axis. This function is

chiefly used for spindle motion.

Parameters:

 channel – The DAC channel to output volts.

 volts – Amount of volts to be outputted on the current channel. Valid range is -10V through +10V.

int32 vsiCmdSetDigitalOutput(int32 port, int32 pinNumber, bool value)

Set the current active state of a Digital Output. DSPMC uses raw pin notation.

Parameters:

 port – Output port of the controller. HiCON = P11 – P14; DSPMC = 0 (raw pin notation)

 pinNumber – Output pin number. HiCON = 0 – 7; DSPMC = 0 – 31 (raw pin notation)

 value – Active state to set the digital output.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 11 www.vitalsystem.com

Motion Commands

Motion functions are NON-BLOCKING which means that a function call for any of the motion functions

will immediately return and not wait for the actual motion to finish. As such, the program must wait

for motion to complete (in some cases) so that the axis may transition to the “Idle” state before issuing

new motion commands.

The presence of active motion can be verified by calling “vsiStatusIsMoving”. Active motion can also

be stopped by calling “vsiCmdCancelMove”.

Linear Motion Commands

 VSI_MOVE_RELATIVE – Target position is made in relation to current position. (value: 2)

 VSI_MOVE_ABSOLUTE – Target position is the absolute position. (value: 4)

 VSI_MOVE_VELOCITY – Motion moves infinitely in one direction. Target position’s sign (+/-) is

used to determine direction. (value: 8)

int32 vsiCmdExecuteMove(int32 axis, double position, double speed, double accel, int32

moveFlags, unsigned int32 seqID)

Execute a point-to-point move on a specified axis.

Parameters:

 axis – Axis to perform the move.

 position – Target/Destination position of the move.

 speed – Maximum Speed to move at.

 accel – Acceleration to the max speed.

 moveFlags – Flags used to determine the type of motion being performed .

 seqID – User-defined sequence ID used to track which move is currently being performed by the

motion controller.

If active motion from a prior vsiCmdExecuteMove call is already present on the axis, calling this

function will “continue on” from the current motion.

NOTE: Before motion commands can be performed, the controller must first be properly configured via

the XML config file. See ”vsiAPILoadXMLConfig”, and “vsiAPIDownloadconfig” above.

The controller (and all axes that will receive motion commands) must be armed, as a motion command

issued on a disabled axis will throw a motion error.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 12 www.vitalsystem.com

For example, if the axis is currently moving at a speed of 100 units/min, and a new motion command

was issued with a speed of 200units/min, then the axis will ramp up from 100 to 200 units/min using

the new acceleration and will stop at the new final position.

However, a motion error is thrown if the target direction of the new motion is in the opposite direction

of the current motion. In this case, it is necessary to wait for the current motion to finish before issuing

the new motion command.

int32 vsiCmdExecuteLinearMove(int32 axisMap, double position[], double speed, double accel,

int32 moveFlags)

Execute a point-to-point move on a specified axis.

Parameters:

 axisMap – bitmask used to determine which axes will execute the motion (e.g. bit0=X, bit1=Y,

bit2=Z, etc).

Example: To move X, Y, Z, and B, the axisMap value would be “23” (binary: 00010111).

 positions – an array of doubles (double[8] for DSPMC, double[6] for HiCONs) which contains the

target positions for the designated axes.

 speed – Maximum trajectory speed to move at.

 accel – Trajectory acceleration to the max speed.

 moveFlags – Flags used to determine the type of motion being performed .

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 13 www.vitalsystem.com

Arc/Circular Motion Commands

Arc Motion Errors

Arc Motion commands will return the following error codes if the motion fails to execute. A return

code of “0” denotes that the motion has successfully started.

Error Description

10001 Axis not idle error. This error is returned if one of the axes involved with the Arc Motion
was not idle/still when the Arc Motion command was started.

10500 Inconsistent radius error. This error can be returned if the “start-to-center” distance is not
equal to the “target-to-center” distance.

10501 360° angle impossible error. This error is returned by the “DoArcMoveRadius”, and
“DoArcMoveAngle” functions since they cannot mathematically interpolate the center
point of a 360° arc.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 14 www.vitalsystem.com

int32 vsiCmdExecuteArcMoveCenter (int32 axisOfRotation, double axisPositions[3], double

offset1, double offset2, double speed, bool clockwise)

Execute an Arc/Circular trajectory move around an axis of rotation by specifying a center point relative

to the initial position.

Parameters:

 axisOfRotation – The axis where the arc/circle trajectory will rotate on.

o A value of 0 means that the arc will be plotted on the YZ plane.

o A value of 1 means that the arc will be plotted on the XZ plane.

o A value of 2 means that the arc will be plotted on the XY plane.

 axisPositions – an array of 3 doubles (64-bit floating point precision) which contains the
target/end positions for the arc trajectory.

 offset1 – Offset from the current axis position to use for the center point. Usage is determined by
the “axisOfRotation” parameter.

o If “axisOfRotation” is 0, then this value is used as the Y offset.

o If “axisOfRotation” is 1, then this value is used as the X offset.

o If “axisOfRotation” is 2, then this value is used as the X offset.

 offset2 – Offset from the current axis position to use for the center point. Usage is determined by
the “axisOfRotation” parameter.

o If “axisOfRotation” is 0, then this value is used as the Z offset.

o If “axisOfRotation” is 1, then this value is used as the Z offset.

o If “axisOfRotation” is 2, then this value is used as the Y offset.

 speed – max arc trajectory speed/feedrate.

 clockwise – specifies the direction of the arc motion. (1 = clockwise, 0 = counter-clockwise).

Example: This code snippet will produce the following
trajectory. Start Position = {120, 60, 0}.

float targetPositions[6];
targetPositions[0] = 120;
targetPositions[1] = 60;
targetPositions[2] = 0;
DoArcMoveCenter(2, targetPositions, -60, 0, 120, 1);

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 15 www.vitalsystem.com

int32 vsiCmdExecuteArcMoveRadius (int32 axisOfRotation, double axisPositions[3], double

radius, double speed, bool clockwise)

Execute an Arc/Circular trajectory move around an axis of rotation by specifying the radius of the

arc/circle trajectory in order to interpolate the arc center.

Parameters:

 axisOfRotation – The axis where the arc/circle trajectory will rotate on.

o A value of 0 means that the arc will be plotted on the YZ plane.

o A value of 1 means that the arc will be plotted on the XZ plane.

o A value of 2 means that the arc will be plotted on the XY plane.

 axisPositions – an array of 3 doubles (64-bit floating point precision) which contains the
target/end positions for the arc trajectory.

 radius – The radius of the specified arc/circle trajectory.

 speed – max arc trajectory speed/feedrate.

 clockwise – specifies the direction of the arc motion. (1 = clockwise, 0 = counter-clockwise).

NOTE: This function has the following mathematical limitations:

 The start point cannot be equal to the end point (360° arc center point cannot be interpolated).

 Cannot generate arcs with angles greater than 180°.

For arcs larger than 180°, use “DoArcMoveCenter”, or call this function twice.

Example: This code snippet will produce the following
trajectory. Start Position = {100, 0, 0}.

float targetPositions[6];
targetPositions[0] = 0;
targetPositions[1] = -100;
targetPositions[2] = 0;
DoArcMoveRadius(2, targetPositions, 100, 120, 0);

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 16 www.vitalsystem.com

int32 vsiCmdExecuteArcMoveAngle (int32 axisOfRotation, double axisPositions[3], double

arcAngle, double speed, bool clockwise)

Execute an Arc/Circular trajectory move around an axis of rotation by specifying the angle of the

arc/circle trajectory in order to interpolate the arc center.

Parameters:

 axisOfRotation – The axis where the arc/circle trajectory will rotate on.

o A value of 0 means that the arc will be plotted on the YZ plane.

o A value of 1 means that the arc will be plotted on the XZ plane.

o A value of 2 means that the arc will be plotted on the XY plane.

 axisPositions – an array of 3 doubles (64-bit floating point precision) which contains the
target/end positions for the arc trajectory.

 arcAngle – The angle of the arc trajectory to generate.

 speed – max arc trajectory speed/feedrate.

 clockwise – specifies the direction of the arc motion. (1 = clockwise, 0 = counter-clockwise).

NOTE: This function has the following mathematical limitations:

 The start point cannot be equal to the end point (360° arc center point cannot be interpolated).

For larger arcs such as a full 360° circle, use “DoArcMoveCenter”, or call this function twice with both

instances generating a 180° arc.

Example: This code snippet will produce the following
trajectory. Start Position = {0, 0, 0}.

float targetPositions[6];
targetPositions[0] = 60;
targetPositions[1] = 60;
targetPositions[2] = 0;
DoArcMoveRadius(2, targetPositions, 270, 120, 1);

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 17 www.vitalsystem.com

Other Motion Commands

int32 vsiCmdExecuteHoming(int32 axis, double homeOffset, double speed, double accel)

Execute a homing sequence on the specified axis.

Parameters:

 axis – Axis to perform the move.

 homeOffset – The position assigned to the axis at the end of the homing sequence.

 speed – Maximum Speed to move at.

 accel – Acceleration to the max speed.

int32 vsiCmdCancelMove(int32 axis, bool instantStop)

Cancels the current move on the specified axis.

Parameters:

 axis – Axis in motion. A value of -1 can also be specified which cancels motion on all axes (and

motion sequences that work on multiple axes such as arc/linear motion).

 instantStop – Set to true to have the axis abruptly stop. Set to false to have the axis decelerate to

a stop.

int32 vsiCmdLoadBufferedMotion(double bufferedMotion[][VSI_MAX_AXIS], int32

motionPointCount)

Loads a set of buffered motion vectors (1 vector per millisec resolution) to the API. The buffered

motion is downloaded to the controller on the next call of vsiCmdDataExchange().

NOTES:

 Only the allowed maximum points from the motion buffer is downloaded when

vsiCmdDataExchange() is called. Calling the data exchange gradually consumes the motion buffer

as necessary until it is fully consumed. The maximum motion buffer size can be specified in the

config XML (see <MaxMotionBufferPoints>).

Parameters:

 bufferedMotion – A 2D array containing several motion vectors. A motion vector is an array of

axis points. 1st dimension is the vector index, 2nd dimension is the axis.

 motionPointCount – The number of motion vectors in the bufferedMotion array.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 18 www.vitalsystem.com

VSI Status Functions

These functions are used to read information about the current controller.

int32 vsiStatusIsOnline(bool* value)

Reads the current online state of the controller.

Parameters:

 value – Returns the current online state.

int32 vsiStatusIsArmed(bool* value)

Reads the current armed state of the controller.

Parameters:

 value – Returns the current armed state.

int32 vsiStatusIsMoving(int32 axis, bool* value)

Reads motion on a specified axis.

Parameters:

 axis – Axis to check for motion. If a value of -1 is specified, the function returns “false” if no axes

are moving, or “true” if at least one axis is in motion.

 value – Returns the true if the axis is currently in motion.

int32 vsiStatusIsMotionDone(int32 axis, unsigned int32 seqID, bool* value)

Checks if the motion flagged with the specified sequence ID is done.

Parameters:

 axis – Axis to check for motion.

 seqID – Sequence ID to check for.

 value – Returns the true if the motion flagged with the seqID is done.

int32 vsiStatusIsHomeFound(int32 axis, bool* value)

Checks if the homing sequence has finished for the specified axis.

Parameters:

 axis – Axis to check for motion.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 19 www.vitalsystem.com

 value – Returns the true if the axis homing sequence is finished.

int32 vsiStatusGetSerial(char* serial)

Reads the serial number of the current online motion controller

Parameters:

 serial – Return string containing the serial number. Allocate at least 10 characters.

int32 vsiStatusGetFollowError(int32 axis, double* value)

Reads the current following error of an axis. The following error is the difference of the the

commanded position and the actual. This value is mostly useful for debugging how much of a following

error was incurred during a disarm.

Parameters:

 axis – Axis to check for following error.

 value – Return value containing the following error value.

int32 vsiStatusGetFollowErrorBits(unsigned int32* errorBits)

Reads which axes have experienced a following error limit. This is useful for determining which axes

were responsible for a “following error” disarm.

Parameters:

 errorBits – Return value containing a bitmask which indicates the axes that incurred a following

error.

int32 vsiStatusGetMotionSequenceID(int32 axis, unsigned int32* seqID)

Reads the current motion seqID on a specified axis that is being executed by the controller.

Parameters:

 axis – Axis to check for motion.

 seqID – Return value containing the current seqID.

int32 vsiStatusGetAxisPosition(int32 axis, double* position)

Reads the current position of an axis. The axis position depends on the type of feedback selected. If

the axis uses encoder feedback, the position from encoder counts is shown. If stepper output with no

feedback is selected, position from the outputted steps is shown.

VSI Motion Control API User Guide

© 2015 Vital Systems, Inc. 20 www.vitalsystem.com

Parameters:

 axis – Axis to check for position.

 position – Return value containing current actual position of an axis.

int32 vsiStatusGetAxisPositions(double* axisPositions)

Reads the current position of all axes and returns an array of doubles

int32 vsiStatusGetEncoderCounts(int32 channel, int32* value)

Reads the current encoder counts from a specified channel.

Parameters:

 channel – Encoder channel to check.

 value – Return value the current encoder counts.

int32 vsiStatusGetDigitalInput(int32 port, int32 pinNumber, bool* value)

Read the active state of a specified digital input.

Parameters:

 port – Input port of the controller. HiCON = P11 – P14; DSPMC = 0 (raw pin notation)

 pinNumber – Input pin number. HiCON = 0 – 15; DSPMC = 0 – 63 (raw pin notation)

 value – Return value containing the current active state of the digital input.

int32 vsiStatusGetDigitalOutput(int32 port, int32 pinNumber, bool* value)

Read the active state of a specified digital output.

Parameters:

 port – Output port of the controller. HiCON = P11 – P14; DSPMC = 0 (raw pin notation)

 pinNumber – Output pin number. HiCON = 0 – 7; DSPMC = 0 – 31 (raw pin notation)

 value – Return value containing the current active state of the digital output.

